
Managing Software Requirements
In the Context of the
Scientific Enterprise1

Steve Larson
Brian Morrison

Jet Propulsion Laboratory
4800 Oak Grove Dr.
Pasadena, CA 9 1 109

Steve.Larson@-ir>l.nasa.gov
Brian.Morrison@ir>l.nasa.gov

8 18-354-0679

Abstract-Developing production-quality software as part of
a scientific research program presents unique challenges.
Some of the techniques for managing requirements in this
context which have evolved over the last three decades at
the Jet Propulsion Laboratory are discussed. The software
development effort in support of the Tropospheric Emission
Spectrometer (TES) project is presented as an example of
the application of these methods.

In certain respects the methods discussed appear to deviate
from commonly accepted practice. In an effort to explain the
success of these methods, some novel information from the
field of cognitive science is explored. We discuss our
assumptions about the underlying model of scientific
process. The tension between the dualistic view of the world
assumed by scientists, and the nondualistic nature of our
solutions to the problems of software development is also
discussed. We conclude with a discussion of our experience
relative to current research into social methods of
requirements engineering.

We find that scientists are a unique type of customer, with
unique needs from the software development process itself,
and not just the end product as many methodologies assume.
A social-based approach to development has proven to be
the most efficient means of mitigating the difficulties posed
by language, educational and cultural barriers.

TABLE OF CONTENTS

1. INTRODUCTION
2. CHALLENGES POSED BY SCIENCE PROJECTS
3. SHORTCOMINGS OF SOME TRADlTIONAL, METHODS
4. ROLE OF SCIENTIST-DEVELOPED CODES
5. CONCLUSIONS
6. ACKNOWLEDGEMENTS
7 , REFERENCES

1. INTRODUCTION

Since the 1960’s NASA’s Jet Propulsion Laboratory (JPL)
has been involved in developing software systems to support
the analysis of data returned by its deep space and Earth-
orbiting missions. Operated since inception by the California
Institute of Technology, a semi-academic, informal
atmosphere has been a hallmark of JPL culture. While many
of the Laboratory’s successes have been attributed to this
culture, Laboratory staff have long recognized the need for
discipline in order to ensure mission success.

However, arriving at the right balance of formality vs.
unrestrained creativity has often proven to be an elusive
goal. Though often achieved by individual projects, this
balance has yet to be achieved at an institutional level. An
effort in the mid-1980’s to codify software practice at the
Laboratory resulted in the so-called D-4000 standard [14],
roughly based on the military 2167A standard.

The D-4000 standard represented the best practices of the
time, but never found complete acceptance. Despite the
authors’ best efforts to make the standard free of
methodological assumptions, it was nevertheless grounded
in a mindset of functional decomposition, the waterfall life
cycle, and the needs of large software projects. As a result,
the standard proved difficult to apply, especially as the
software engineering world evolved towards object-oriented
methods, rapid prototyping, and evolutionary development.
The individual needs of different application domains also
presented difficulties for the standard. Over time, groups
within the Laboratory responsible for flight software, ground
support software, mission control systems, telemetry
systems, and science software systems had each evolved
their own unique solutions. Although the standard’s authors
were familiar with these solutions, the final result was
widely viewed as non-responsive to the needs of particular
domains. In a sense, the standard was a victim of its own
success. The authors had done such a good job at abstracting

’ 0-7803-5846-5/00/$10.00 0 2000 IEEE

mailto:Steve.Larson@-ir>l.nasa.gov
mailto:Brian.Morrison@ir>l.nasa.gov

the essentials of the software process from the particular
instances they were familiar with, that the end result was
unrecognizable to many practitioners.

Despite its drawbacks, the D-4000 standard has had a
significant impact on the way software developers do their
job at JPL. Within the Image Processing and Analysis
Section, a tailored form of the standard was applied to the
development of the Multimission Image Processing System,
and later, to the science software projects supporting the
Earth Observing System (EOS) instrument projects at JPL.
The Tropospheric Emission Spectrometer (TES) project is
the most recent of the latter class of software project within
the section.

While the D-4000 standard provided a formal framework for
software development, the local methods of developing
software that had evolved over the previous twenty years
prior to D-4000 remained in use. These methods have never
been formally captured, and if they are written down at all,
are scattered across a broad range of project internal
documentation. Probably the most influential methods used
were never written down at all, forming an important,
though tacit body of knowledge about how to succeed at
science software projects. This paper is an attempt to
describe some of the previously tacit knowledge embedded
in the local corporate culture.

The immediate sources of many of the methods and
approaches used by the TES team were earlier EOS, and
EOS-related Earth remote sensing projects. These include
the Airborne VisibleAnfrared Imaging Spectrometer
(AVIRIS), Atmospheric Emission Spectrometer (AES),
Multiangle Imaging Spectroradiometer (MISR), Advanced
Spaceborne Thermal Emission Spectrometer (ASTER), and
the Atmospheric Infrared Sounder (AIRS). These projects
represent a distinct thread of methodological development
within the Section, largely under the influence of Graham
Bothwell, who was responsible for managing all of them
except AIRS for at least part of the project lifetime. The
general approach to science software discussed here is
deeply indebted to Graham’s insights and guidance over the
past decade.

2. CHALLENGES POSED BY SCIENCE PROJECTS

TES-Specific Challenges

The TES project is a somewhat extreme example of science
software development projects at JPL. With the possible
exception of the MISR project, TES stands out as unique in
the difficulties posed by the instrument system and the
science. TES is a Fourier transform spectrometer designed
to measure high resolution infrared spectra from low earth
orbit. It is an unprecedented measurement system with its
unique combination of spectral resolution, signal to noise,
and ability to operate in a nadir and limb viewing mode. The
purpose of the mission is to provide a three-dimensional
map of tropospheric ozone and its chemical precursors, plus

temperature, water vapor and surface parameters. These data
are to be used by global climate researchers to validate
models of the Earth’s climate system.

The prototypical JPL instrument is an imaging system. This
is especially true of the systems supported within the Image
Processing Section. One of the challenges posed by TES is
the unfamiliar nature of the measurement. As a spectrometer
with only sixteen spatial channels but over 5,000 spectral
channels, the data do not lend themselves easily to visual
interpretation. As an interferometer, the data require
complex mathematical algorithms to convert raw bits into
physical units. These methods, too, were new to the software
team.

Processing of the measured spectra into vertical species
profiles involves a highly complex algorithm that challenges
the software development team’s mathematical and physical
reasoning skills. The nature of the processing problem is
such that it is impossible to calculate a deterministically
correct solution. One is in the position of having to accept
what is best characterized as the most likely solution. The
techniques for doing so are highly sophisticated,
representing the cutting edge of optimization techniques.
The non-deterministic nature of the algorithm lends an
uncertainty to the process that some developers find
discomfiting.

Most importantly, the science algorithms for processing the
data were largely undefined at the start of the project.
Developing the algorithms has required a multi-year effort
on the part of a geographically distributed science team. The
algorithm development process is still ongoing, and is
expected to continue well after launch, currently scheduled
for December 2002. The requirements management aspect
of the software development is thus intimately coupled to a
scientific research program. In a very real sense, our
requirements specifications job is synonymous with the
algorithm research program.

General Challenges of Science Software Projects

We present below what must be regarded as a partial
discussion of the challenges posed by science software
development projects in general. We focus on developing a
fundamental understanding based on the epistemological
characteristics of the scientific enterprise. Certain factors
relating to the basic needs of scientists are also discussed.

Nomology-In what will become a recurring theme of this
paper, we begin by observing that there are fundamental
differences between the development of instrumentation,
scientific theories, and software. Our first observation is that
these activities do not share a common nomology (rules of
reasoning). This fact is a source of difficulty in developing
requirements for science software projects.

Instrumentation always obeys the laws of physics. When
reasoning about instruments, the laws of physics are clearly

the appropriate rules to apply. As an activity directed
towards correctly understanding and interpreting physical
phenomena, science is clearly situated in the cognitive realm
of human functioning. But what nomology applies here?

Scientists will often assert that the same rules of physics (or
whatever specialty the project involves) apply to scientific
activities as well. However, this is only part of the story.
Physical reasoning plays a primary role, but mathematical
thought, deductive and inductive logic apply, as do a host of
progressively less ”scientific” factors, including the
preconceptions of each scientist as to the types of potential
solutions they will seek, and more personal prejudices
unrelated to science per se. At this point, the question of
what rules of reasoning apply to the conduct of scientific
investigations becomes confounded with the question of
what rules apply to human behavior in general. This
question is the province of cognitive science.

The entire project of cognitive science may be viewed as an
effort to uncover the nomology of the mental world. In the
half-century since it emerged as a recognizable research
program’, various avenues in linguistics, philosophy,
anthropology and neuroscience have been explored. In spite
of the many fascinating theories that have been developed
about human cognition, there appears to be no nomology
equal in stature to (for example) physics, to provide a
suitable foundation for understanding cognitive phenomena.

How we interpret the failure of this pursuit has important
implications for how we approach science software
problems. If we interpret the situation in the modernist
tradition, and view it as merely a matter of time before the
rules are uncovered and explained, then we are likely to
misinterpret some (but not all) of the difficulties
encountered in science software projects. In particular,
difficulties arising out of the preliminary and contingent
nature of scientific knowledge, as discussed in greater detail
later, may be misunderstood as difficulties that may be
addressed simply by working harder to clarify understanding
or answer questions. The situation is often not that simple.

On the other hand, if we adopt a more post-modern view we
risk a profound conflict with the foundation of science.
Descartes, who may be regarded as the founder of the
modernist faith in an objective, external reality regarded it as
the scandal of philosophy that no one had yet successfully
refuted the view that nothing exists outside one’s subjective
reality. Heidegger3 [1 11 inverts this formulation, saying, “the
‘scandal of philosophy’ is not that this proof has yet to be
given, but that such proofs are expected and attempted
again and again.” Although Heidegger’s challenge does not
appear to threaten in any way the ability of science to
continue to make strides in understanding the world, it
strikes closer to home with software engineering, a field that

finds itself hard-pressed to ground its conclusions in the
“real world“. The Heideggerian challenge implies that the
rules we seek may be inherently undiscoverable.

The inability of software engineers to ground the wisdom of
their trade in something equivalent to the laws of physics
hampers their ability to communicate with a science team.
The problem boils down to the inability to provide a
convincing justification for software engineering methods.
Orthodox scientific training leads scientists to expect and
accept as true only statements based on “scientific”
principles and evidence. Although considerable work has
been done to establish the value of practices such as peer
reviews, diagramming, and documentation, the studies
which support them appear too anecdotal to be accepted
uncritically by the scientific mind, and their interpretation
lacks the supporting body of theory that would enable one to
trace conclusions back to first principles. Lacking such a
foundation, it can be difficult to communicate to a science
team the value of requirements engineering.

It is therefore especially important to avoid justifying the
effort devoted to requirements on the basis of the software
engineering profession itself. We have found it imperative
that the development team formulate requirements issues
explicitly in terms of the scientific objectives of the science
team.

Methodology-A scientist, frustrated with the inscrutable
and slightly suspect methodology of an engineering team,
might naively insist that the proper way of developing
science software is the way they themselves have always
done so. Typically, this means one or two people writing a
code for their own use, or for the use of their immediate
work group. These codes may grow and evolve as an
integral part of a scientist’s research, often over decades.

For a scientist accustomed to working with computers in this
mode, it can be very difficult to adjust to any other way of
working. Confronted with the prospect of being deprived of
their former intimacy with the inner workings of a program,
and their total control over its features, a scientist may resist
the efforts of a software engineer to apply their own methods
to the software development.

This resistance may be explicit or implicit. In some cases,
application of change management techniques (e.g., [161)
may be effective. However, we have found it generally
impossible, and counterproductive, to try to convince
scientists used to working directly on code to give it up
entirely. Programming is often inextricably embedded in a
scientist’s working methods. We favor the development of
team structures that provide programming support to
scientists who require it, and an organizational bridge to join
these activities to the more formal software development
activities (cf our discussion of prototyping below).

2 See [151 for a general overview of the history of cognitive science. A scientist who has successfully written many software
As quoted in [4]. programs in their career is likely never to have written a

requirement, as the issue of communicating them rarely
arose. If it did, was most likely with a colleague or student,
who could reasonably be expected to share much of their
understanding of the domain. Thus, with some justification,
scientists will often challenge the need to write
requirements.

Though it is possible to mandate documentation of
requirements programmatically, this approach is not likely to
elicit the kind of cooperation necessary to produce a quality
requirements specification. To address this issue we again
advocate the development of effective team structures that
facilitate requirements development with a minimum of
intrusion on the science team’s normal activities.

Key to success in this area is the presence on the team of
individuals who have sufficient training in the scientific
domain to act as bridges between the science team and the
more computer science-oriented software engineers. Given
the highly technical nature of most science software
requirements, we have found that Master’s and doctoral level
degrees in scientific disciplines are often required. A person
in this type of position must be sufficiently interested in the
science that they devote the time and energy needed to
understand it, but not so interested that they cannot
disengage themselves from the science to focus on software-
specific matters. These are the individuals who are best
capable of eliciting tacit requirements, and correctly
interpreting explicitly given requirements. As we shall
discuss more fully later, we find the issue of the
interpretation of requirements to be fundamental to science
software development.

How many such “bridges“ are needed to be successful? It is
difficult to provide an exact formula. A scientist-bridge ratio
of between 1: 1 to 2: 1 seems appropriate. For example, the
TES project currently has four full-time science algorithm
developers on the science team resident at JPL, and the
equivalent of two to three full-time algorithm developers off
site. We have three people who serve in bridge roles at JPL,
and one off site. We can see a clear need for at least one
additional person in a bridge position.

Communications-One must pay special attention to the
communications skills of the software engineering staff.
Although staffing may be regarded as a project management
issue rather than a requirements management issue, the
importance of communications skills cannot be overlooked
in a discussion of science software requirements
engineering, as the cultural and vocabulary barriers are often
substantial.

A scientist able to communicate effectively with other
scientists may be less effective when confronted by non-
scientists. Weakness in communications skills may be
masked in scientist-scientist interactions by the shared
language of the discipline, and a willingness to tolerate those
weaknesses on the basis of mutual regard. A similar

situation obtains with regard to engineers. Training in both
disciplines places little emphasis on interpersonal skills.
Indeed, it is the attitude of many scientists and engineers that
these skills are simply not important as long as the quality of
their technical work is good.

Since one typically cannot influence the make-up of a
science team, it is essential that care be taken when selecting
the staff who will be expected to carry out the requirements
engineering tasks.

Two Cultures, One Shared Purpose-Establishing a shared
purpose in a heterogeneous scientists/engineering team is
more difficult than in a homogeneous case. At least part of
the problem stems from the type of goals each group is
culturally predisposed to establish. Science may be
characterized as an activity that is larger than any single
participant. Its scope is generally taken to span centuries and
nations, and its goals explicitly formulated in terms of what
is currently beyond reach. Engineering groups, on the other
hand, typically have a more near-term, immediate focus.

Physicist and writer C.P. Snow described the gulf separating
scientific and engineering culture 40 years ago [161 as
follows:

Pure scientists and engineers often totally
misunderstand each other. Their behavior tends to be
very different: engineers have to live in a very
organised community, and however odd they are
underneath they manage to present a disciplined face
to the world. Not so pure scientists. [Scientists] have
statistically a higher proportion in politics left of
centre than any other profession: not so engineers,
who are conservative almost to a man.

Snow was critical of the attitudes of contemporary scientists.
He lamented that, “ Pure scientists have by and large been
dim-witted about engineers and applied science. They
couldn’t get interested. They wouldn’t recognise that many
of the problems [of engineering] were as intellectually
exacting as pure problems, and that many of the solutions
were as satisfying and beautiful.” Snow went further to say
that, “We prided ourselves that the science we were doing
could not, in any conceivable circumstances, have any
practical use. The more firmly one could make that claim,
the more superior one felt.”

Although much has changed, especially in terms of the
attitude of scientists towards the relevance of their work to
society at large, since Snow wrote those words, the
polarization between science and engineering culture
remains a significant force today. It is also important to
recognize that the situation is not one-sided. Engineering
culture has its own ingrained attitudes that can make it
difficult for them to appreciate the needs of scientific
research. One must also be cautious about applying
generalizations to specific individuals. Nevertheless, cultural
differences pose one of the largest barriers to effective

science teadengineering team partnerships. Mitigating
those differences requires a constant effort throughout the
project life cycle.

Given these differences, how does one formulate a shared
vision that both sides will buy into? One approach we have
had success is to seek an expression of the team’s objectives
that lends itself to a satisfactory interpretation from either
perspective. For example, on the TES project, our
overarching goal is to deliver a global data set of vertical
species profiles, plus temperature and surface parameters, of
ozone and it precursors. This formulation is preferable over
one that emphasizes science, such as “to do ozone research”,
or software, such as “to develop and deliver the profile
retrieval software”.

The value of culturally neutral expressions extends to the
development of requirements. Wherever possible, science
software requirements should be written in such a way as to
preserve their scientific intent. A requirement which has
been formalized to the point where the scientific context is
no longer evident will be incomprehensible to a scientist,
and will likely convince them that the process is either
irrelevant, or even harmful to their goals. It will also be a
substantial barrier to verification4, as the scientist is unlikely
to be willing to verify a requirement that they perceive as
irrelevant.

3. SOME SHORTCOMINGS OF EXISTING METHODS

The discussion to follow must be set against a background
of appreciation for the value of traditional software
engineering techniques. Even the waterfall model, maligned
as is may be in the literature and in practice, contains an
essential kernel of truth about the basic order of events in
software development. The TES team’s approach to
documentation and standards for reviews are based on the
D-4000 standard, tailored to meet project needs. We
challenge here the value of certain techniques or
assumptions specifically in the context of science software
development. We begin with a criticism of the way in which
some problems in requirements engineering are posed.

Posing the Problem for Solution

Dorfman and Thayer [l] provide a comprehensive list of
requirements management issues that appear to us both
comprehensive in scope, and typical in their expression. An
abbreviated version of their list is as follows:

1) Inability of engineers to write software specifications.

2) Management desire to emphasize code & test at
expense of requirements.

3) Lack of customer cooperation in requirements
verification.

The subject of customer involvement in requirements verification is
discussed in more detail below.

Lack of customer understanding of purpose of
requirements.

Tool/methodology selection.

Effective lack of knowledge that system requirements
are essential to software requirements.

Lack of training in requirements allocation from system
to software.

Habit of management in placing people with little
software experience in charge of large software
projects.

This list should be familiar to all experienced software
engineers. Different writers will express it in different forms,
with differing emphases, but the message is fairly constant.
Science software projects are the same as all others insofar
as they share in these issues to one degree or another.
Although we discuss Dorfman and Thayer’s formulation
here, we view it as an example of the way in which software
development issues are commonly framed. No specific
criticism of Dorfman and Thayer is intended.

Our difficulty is with the language in which the issues are
expressed, especially items 3 and 4. By identifying the
customer’s “lack of cooperation” or “lack of understanding”
as an issue, the problem is posed in terms of a supposedly
correctable fault in the customer, and suggests that solutions
lie in the area of educating the customer, or providing them
with encouragement or incentives to become more involved.

Unmet Needs-We propose to reformulate the problem in
terms of unmet needs. In the case of a scientist customer, we
believe those needs are profound and may even have a
physiological basis. If our physiological hypothesis is
correct, failure to meet those needs may incur resistance that
cannot be reasonably overcome or redirected for the
convenience of software developers.

We must emphasize at the outset that the discussion to
follow is not intended to be scientifically rigorous. Our
intent is to provoke discussion of how physiological aspects
of the human organism may bear upon the behavior of
people involved in the software development process, and
how that bearing might influence our formulation of
software engineering problems.

As background, we present now some information on how
the human brain is thought to function. Ornstein and Sobel
[9] present an intriguing account of the effects of over and
understimulation on the brain. Studies of brain development
in rats5 have shown that stimulation directly affects the
growth of neurons. Conversely, understimulation results in
neural atrophy. The ability to induce growth extends into old

See discussion of the work of Marion Diamond in [9], p. 222.

age, where as little as a week of appropriate stimulus is
needed to produce measurable changes.

The brain regulates the amount of information flow it
receives, similar to the homeostatic functions that regulate
blood pressure and body temperature. “Compared with one
less experienced or developed, the more experienced brain
does receive less sensory information because we have
learned to extract out just those bits of information we
need.. . At each step we need less and less, we need attempt
less and less. As we age we get more and more needful of
strong stimuli.6”

The profound impact of mental understimulation on the
overall health of the individual is dramatically illustrated by
the results of studies that suggest a link to cancer’. “When
the information deficit reaches some critical value, the brain
sends a nonspecific signal . . . indicating the need for novelty
or information; carcinogenesis is the body’s mode of
providing ‘information-novelty’ which is subsequently fed
back to the brain and which attempts to rectify the relative
information underload signaled by the brain.”[101

Our thesis here is simply this: that the information needs of a
scientist (or any other customer type with a strongly
intellectual component to their profession) are deeply rooted
in their physiology. We do not suggest that it is possible for
a software team to endanger the health of a scientist merely
because the latter finds software boring. A bored scientist
will disregard the software process and return to their work
long before any real health hazard could materialize.

To illustrate the importance of our physiological hypothesis,
the following analogy may be helpful. Asking a scientist to
leave the interesting and challenging world of their research
for a day is akin to asking them to skip lunch. They may
experience some discomfort, but if the perceived gains are
sufficient, the sacrifice may be acceptable. Failing to meet
their information needs over the long term, however, is akin
to asking them to fast for a year.

Scientists have chosen a profession that meets their
prodigious need for intellectual stimulation, and their chosen
field is probably the most important means of fulfilling this
need. It is our experience that boredom is a frequent
complaint of scientists expected to participate in software
development activities. These complaints disappear when
the focus of the activity is sufficiently close to their own
concerns that they can participate as scientists rather than as
conscripts.

Our discussion of the physiology of information needs adds
another dimension to the problem of how to successfully
engage a scientist customer in the requirements engineering
process. As is commonly understood in the software

Omstein and Sobel [9], p. 214-215.
’ The quote which follows is excerpted from Omstein and Sobel [9], p.
226.

engineering community, failure to understand requirements
adequately is likely to lead to project failure, or at the very
least to cost and schedule overruns, and to a disgruntled
customer unlikely to provide your organization with repeat
business.

Writing Specifications

Considerable work has been done on defining the attributes
of good requirements. Typically, the list of desiderata
includes such features as completeness, correctness, and
absence of ambiguity. Despite the fact that recent
methodologies emphasizing iterative development and rapid
prototyping have challenged the practicality of achieving
these qualities in an absolute sense, especially at the
beginning of a project, they have not been abandoned
outright. As discussed below, we find the nature of science
projects introduces new complications into the task of
writing “good” specifications.

The root cause of the trouble lies in the fact that software
plays an intimate role in the process of acquiring knowledge.
In this capacity a science software project is unique among
software projects in general. How one approaches the task of
software development in this context is highly dependent on
one’s underlying model of the scientific process. Equally
critical is how one resolves the ambiguities intrinsic to the
process. We begin with a discussion of our assumed model
of the scientific process, and proceed to explore the
complications arise as a result of weaknesses in those
assumptions.

Model of the Scientific Process-An inadequate model of
the scientific process can lead to unrealistic expectations of
the process, and of the requirements engineering activities
which depend on that process. Despite its popularity, we
find Kuhn’s notion of paradigm shifts [7] an unsatisfactory
basis for understanding the dynamics of science software
projects. In our experience Kuhn’s model does not provide
an accurate description of the way science is carried out on a
day-to-day basis’, and it fails to provide a basis for a rational
understanding of the scientific process.

The model assumed in the present work is based on Lakatos’
[3] notion of a research program. A research program is
more than a specific plan for conducting research. It
encompasses a broad range of assumptions and attitudes
concerning which questions should be asked, how they
should be formulated, the form of solution one should seek,
the methods by which those solutions are developed, and the
ultimate goals and value of science. Earth system science is
an example of a research program.

At the level of how scientists carry out their work day-to-
day, we adopt as a model what Lakatos calls sophisticated

* L. Pierce Williams [2] criticized Kuhn and others for attempting to
construct a philosophy of science upon the basis of a history of science that
was in itself insufficient to support such a project.

methodological falsificationism. In this model, a scientific
theory T is falsified if and only if another theory T‘ has been
proposed with the following characteristics: (1) T‘ has
excess empirical content over T: that is, it predicts novel
facts, improbable in the light of, or even forbidden by T; (2)
T’ explains the previous success of T, that is, all of the
unrefuted content of T is contained (within the limits of
observational error) in the content of T’; and (3) some of the
excess content of T’ is corroborated.

Sophisticated falsificationism attempts to moderate the
extremism of naive falsificationism by establishing the
conditions under which a theory could be legitimately saved
from potentially falsifying observations by the addition of
auxiliary hypotheses or theories. According to sophisticated
falsification no experiment, experimental report, observation
statement or well-corroborated low-level falsifying
hypothesis alone can lead to falsification. There is no
falsification before the emergence of a better theory.

This latter point is important, as it sheds light on the
methodological reasons why science software development
can be as complex as it often is. It is usually necessary for
the scientist to maintain several competing theories
simultaneously, and to modify them continually in light of
new observations or related theoretical developments.
Scientific theories typically constitute the most important
(from the customer’s point of view) component of a
requirement specification.

Dualism-A dualistic relationship between the mind and an
objectively knowable world is implicit in both Kuhn’s and
Lakatos’ understanding of science. For present purposes, we
may take the “mind” to represent the scientist who attempts
to understand the physical world. In this model, the mind is
separate from, and independent of, the physical world.
Another common assumption of the dualistic viewpoint is
that knowledge consists of internal representations of the
world, representations that are evaluated according to the
degree to which they correspond with the observed state of
affairs in the world.

It is ironic that perhaps the strongest challenge to the
representational theory of knowledge comes from science
itself. A classic work on vision in frogs by Humberto
Maturana, et al, [5] showed that certain nerve fibers in the
frog’s retina were able to detect patterns such as that a fly
might make, and that triggering these nerve fibers lead to
behavior appropriate to catching the fly in that spot. In
Winograd and Flores’ [4] discussion of this work, they
conclude that, “the frog with optic fibers responding to small
moving dark spots does not have a representation’ of flies.”
If Maturana’s finding is correct, that it is structural patterns
in neurons rather than a literal representation of objects in
the world that underlie the mind’s activity, then what exactly
are we doing when we engage in model building? In the

structuralist view of mental functioning, we are modifying
connections between neurons, but nowhere do we ever
create something that could be construed as a model.

If we regard mental models as an emergent property of the
neural structure of the brain, we have removed it one step
from the so-called “objective” world, which we suppose it
represents. What now may be said of the connection
between our models and “reality”? The post-modern
tradition in philosophy has raised this issue in many
different forms. The essential issues (with respect to the
present subject) that emerge in their work concern the
effects of previous understanding.

The Hermeneutic Circle and Measurement Systems

We designate the total system of instrumentation, processing
software and supporting physical theory a measurement
system. A measurement system is neither completely
physical nor completely cognitive in nature. The
hermeneutic circle is a concept drawn from textual analysis.
Originally applied to the problem of interpreting texts, the
concept has since been expanded and applied elsewhere. We
apply it here to the problem of acquiring and understanding
scientific data (text) about the physical world.

Simply put, the hermeneutic circle says that we cannot
understand a text except in terms of other texts with which
we are already familiar. It is understood as a barrier to
understanding an author’s “real” intent versus applying
one’s own interpretation based on one’s own prejudice as
the “meaning” of the text.

A scientist presupposes that “nature” is the “author” of the
text (data) he or she is attempting to understand. In our
version of the hermeneutic circle, the scientist’s status as
“reader” of this text is ambiguous. As described in greater
detail below, the scientist plays a role in the authorship of
the data, and thus is in danger of reading as nature’s hand
what they themselves have written. This is presented as a
problem for requirements engineering, as it affects their
principle source of requirements.

Instrumentation and Preunderstanding-We begin by
considering the status of physical instrumentation.
Simplistically, we may regard the objective world to be
synonymous with the physical world, and we may regard
instrumentation systems as part of that world, with the
cognitive processes associated with theory building and
software located in the mental or cognitive realm.

Though simplistic, this basic distinction provides valuable
insight into the software development process. As an aside,
we believe this distinction is basic to all software
development projects, and helps explain why methodologies
based on experience with hardware system development
have proven inadequate for software projects.

Emphasis in the original text, Winograd and Flores [4], p. 46.

In response to the post-modern challenge to dualism, we
modify this simplistic view by recognizing a continuum
between physical instrumentation and interpretive activities.
By virtue of the interaction of thought (in the form of
observational theories, as defined below) and physical
reality, the line between the two may become confounded.

Since Galileo, science has relied upon instrumentation to
extend the reach of human senses. Instrumentation is an
artifact of the physical world. As such, it must obey the laws
of physics. In fact, we may say that physical instrumentation
obeys the laws of physics infallibly, regardless of whether or
not the instrument is correctly designed or constructed, or
makes useful measurements at all. But instruments are
designed by human beings-scientists-and those designs
are based upon prior physical theory regarding the physical
world.

The theories used in the construction of instruments belong
to a class of theories Lakatos called observational theories
[4]. Observational theories are physical theories that are
regarded by practicing scientists as sufficiently well proven
to be regarded as unproblematic. They are distinguished
from explanatory theories, which are theories intended to
explain some observable phenomenon. Experiments are
intended to test explanatory theories, and are carried out on
the basis of observational theories.

In a science software project, it is important to recognize
first, that a theory may function as an observational theory in
one context, and as explanatory in another. Observational
theories must always start out as explanatory theories. New
discoveries may appear to falsify an observational theory,
and cause its assumed explanatory power to be called into
question. Although no practicing scientist thinks of what
they do in exactly those terms, in practice they are keenly
aware of the possibility of this occurring.

On the TES project, an example of an observational theory
would be the body of theory underlying the algorithm we
call the “forward model”. This algorithm describes how a
mathematical representation of an absorptiodemission
spectrum can be constructed based on knowledge of the
atmospheric state, the laws of electromagnetic radiation, and
certain quantum mechanical properties of the molecules
present in the atmosphere. Prior to its being accepted as a
satisfactory basis for use in analyzing a measurement, the
theory had prove its ability to explain real spectra.

As is implied by our model of falsificationism, no such
proof is ever completely conclusive. Indeed, there are
inevitably approximations made in solving complex
equations and an absence of critical measurements to
completely validate the theory. On TES, we regard the
forward model theory as fairly well established, but there
remain open questions about its ability to model aerosols,
and scattering, and the underlying laboratory measurements
used in the calculation are known to be incomplete and in

some cases inaccurate. Where laboratory data are simply too
poor, theoretical calculations provide the needed parameters.
These factors condition our view of the correctness and
completeness of our forward model requirements. Since the
software requirements express a physical theory, they are
subject to the same vicissitudes as the theory itself.

Although the characterization is somewhat dramatic, one
could say that science software requirements are best
understood as set of educated guesses embedded in a much
larger network of guesses. There are no certainties, and there
is no way to insulate your requirements against unexpected
outside influences beyond the project team’s control.
Indeed, scientists expect to be occasionally jostled from
previously comfortable conclusions, and a science software
requirements engineer should have similar expectations.

As discussed above, an instrument always obeys the laws of
physics, and it obeys explicitly only those physical laws of
which the designers were aware. The choice of instrument,
the details of its design, the situation in which it is placed,
and the uses to which it is put are all the result of deliberate
choices made by the scientist. Thus, an instrument, while
patently an artifact of the physical world, is always an
expression of the preunderstanding of the scientist who uses
it. It may not be regarded as independent of the theoretical
understanding of the scientist responsible for it’s design and
specification.

The Hermeneutic Circle and Sofrware-The hermeneutic
circle becomes even more problematic in the area of
software development. The case of the Total Ozone
Mapping Spectrometer (TOMS) on the NIMBUS-7
spacecraft illustrates the situation well. NIMBUS-7 launched
in October 1978, and the TOMS began returning data in
November of that year. The instrument returned data until
the instrument finally failed in May 1993.

The TOMS science team was responsible for the software
used to process TOMS data to produce ozone maps. Based
on then-current understanding of Antarctic ozone, the team
put a trigger in their software to detect low ozone amounts,
and to flag the data as defective.

Although evidence of the ozone hole was present in TOMS
data from 1979 onward, the team overlooked the presence of
the hole until 1985 when a team lead by Joseph Farman
reported it. A reanalysis of the TOMS data revealed the full
extent of the ozone hole, which Farman’s ground-based
measurements had been unable to do, but nevertheless, the
team missed out on being able to claim the discovery of this
important atmospheric feature.

It is clear that the hermeneutic circle is a real and important
feature of the science software landscape. When considering
the possible effects of the hermeneutic circle on a science
software development project, it is essential that one does
not attempt to find ways to bypass it altogether. As
Heidegger asserts, “if we see this circle as a vicious one and

look out for ways of avoiding it, even if we just sense it as
an inevitable imperfection, then the art of understanding has
been misunderstood from the ground up.”[1 1 , p. 1941

While it remains an essential part of any scientific activity to
work assiduously to uncover all of one’s hidden assumptions
and prejudices, the hermeneutic circle precludes that one’s
understanding will ever be complete or totally objective.
Current trends in the software industry towards “good
enough” software implicitly recognize this fact. However,
even if one constructs a process (as we have) whereby
requirements are determined to be “good enough”, even then
there remains some uncertainty. How do you know they are
good enough? Are you telling yourself what you want to
hear?

Problems with Specification Languages-To address the
problems of ambiguity inherent in natural languages, some
authors” suggest using a requirement specification
language, or structured English, to express requirements.
However, we find this approach to be fraught with
difficulties, and find that the scientific process itself
provides what may be the best available means of dealing
with the issues of ambiguity. In our discussion of the latter
point, we begin to show more clearly why we believe the
social aspects of science software requirements engineering
are most important.

The linguist Noam Chomsky posited a meta level of
expression-simple, declarative sentences which, through a
set of well-defined rules could be transformed into any
possible expression. Indeed, some compiler systems are
designed with exactly this model. Chomsky’s theory
provides us with a prototypical basis for requirements
specification languages. There are two key assumptions one
must make to adopt this model: first, that there is a meaning
independent of any particular expression, and second, that
nothing is lost in the translation. Post-modernist thinkers
have challenged both of these notions. We find that the
challenge has been effective, at least in the case of science
software requirements.

A trial use of structured English [121 was firmly rejected by
the customer on the AES project. The resulting prose was
found to be too much like reading computer code, which
some members of the project team, the project manager and
principle investigator in particular, found virtually
impossible to read. The same individuals are involved in the
same capacity on the TES project, and the use of structured
English was not proposed for TES.

In addition to problems of customer acceptance, we find
other difficulties with specification languages on science
software projects. In discussing the advantages of
informality Goguen [8] refers to the eficiency of language.
By efficiency is meant the ability of natural language to have

lo See, for example, Hatley and Pirbhai [121.

meaning that is context dependent, and to have multiple
meanings simultaneously. While these are the very
“problem” features specification languages are meant to
solve, Goguen argues that it would be difficult, and perhaps
impossible, to communicate without the ambiguity in natural
language.

We believe that specification languages cannot completely
solve the problems they set out to solve by virtue of the fact
that they are themselves constructed from natural languages.
That they can never be free from the supposed problems of
natural language may be demonstrated by an example”
taken from Hatley and Pirbhai [121 (see figure 1) .

The specification in this example would appear to be clear,
and unambiguous, but exactly what is a pulse? This word
and the phrase “shaft rotation” illustrate the impossibility of
constructing a specification language without reference to
objects in the real world. But real-world objects have names
that are defined in terms of natural languages, and there is
no way to extricate them from that context.

PSPEC 1; Measure Motion

For each pulse of shaft rotation:

add 1 to DISTANCE COUNT
then set:

DISTANCE = DISTANCE COUNT/
MILE COUNT

I

Figure 1 Example of Structured English

One assumption of advocates of specification languages is
the assumption that whatever ambiguities inherent in the
natural language expression are artifacts of the natural
language itself, and not the thought of the writer.

Can a requirements language say what we mean? One of our
top-level science requirements is to “. . .incorporate a flexible
list of additional species.. .” The document does not specify
what “flexible” means, or exactly what “incorporate”
means (incorporate into the code? a database? what?).
Nevertheless, this requirement represents the intent of the
science team, and does not constitute a problem for the
development team. Both the science team and the developers
share an understanding of this requirement, despite its lack
of specificity. More importantly, both teams recognize that
there remain some open issues as to exactly how this
requirement should be met, and further understand the
process by which the issues are to be resolved. We treat our
requirements as item .f information, as Goguen [8] defines
them: “an item of information [is] an interpretation of a

configuration of signs for which a social group can be held
accountable.” The social group here is the project team,
comprising scientists and software developers.

The efficiency of language is a key part of our ability to deal
with imprecise knowledge. Attempting to remove the
ambiguity in the specification would prove to be disruptive
to the flow of work, and if attempted as an exercise in its
own right would likely meet with the derision of the science
team.

Advocates of the use of requirements languages may argue
that the important thing is the exercise of attempting to
perform the translation. That is, it is the process of
attempting the translation that produces the most important
results in the form of improved understanding. Although this
argument has some merit, it is insufficient to justify such as
approach in our case. We must make it clear that we do
resolve the ambiguities. However, this effort is part of the
science process rather than a separate exercise.

Resolving Ambiguities-Ambiguities are a common feature
of our specifications. However, we do not simply leave them
be, and permit the inevitable consequences to ensue. In the
case cited above, the ambiguity is deliberate on the part of
the science team. They do not know enough about what they
really need to be more precise.

The science team and project team members responsible for
the particular subsystem the requirement pertains to meet
formally once a week, and informally every day. These are
explicitly the forum for resolving the ambiguity of the
requirement. However, even in this context the focus is not
on how to state the requirement more clearly (although this
does occasionally occur), it is most typically in the context
of discussing potential design solutions.

Placing the requirements clarification process in this context
helps to bring the discussion closer to the actual world of
concern of the science team. Relative to the discussion
above of boredom and physiology, this is an example of how
the process is made a more integral part of the scientist’s
work. It is the job of the software engineers to recognize that
the process is addressing ambiguities in requirements, and to
modify the specifications accordingly.

If the ambiguities in a natural language specification are due
to the ambiguities in the understanding of the writer, then
the use of specification languages can only help uncover
their existence. But in the instance of a science requirement,
an ambiguity in a requirement often reflects a genuine lack
of clear understanding of how the world works.

Is the imposition of a specification language the best means
of uncovering this lack of understanding? We believe not.
Scientists have developed a highly sophisticated means of
performing this function. It does not work perfectly, but the
process of peer review, both formal and informal, is an
effective means of discovering areas of weak understanding.

Since this process is already intrinsic to the practice of
science, the salutary effect of specifications languages
appears redundant.

Software peer reviews-It is not completely satisfactory to
rely on the peer review process of scientists alone. On TES,
we extend this process into the software development
activity through informal peer reviews of software work
products. The science team routinely participates in these
reviews. These reviews provide further social context for
clarifying, reworking and understanding requirements. It is
this highly interactive exchange of ideas and interpretations
that we believe gives the greatest value to the software peer
review process.

On the TES project we use the peer review process as one
technique to better understand science requirements. This
technique is familiar ground to the scientist and represents a
fairly common mechanism to attempt to better understand
science goals and objectives by emphasizing what is known
and to expose areas of weak understanding. The key to
developing requirements during the peer review process is
to understand that the science requirements themselves are
evolving in parallel to the scientific research. Through peer
reviews we embed the development of requirements with the
process of advancing the research by working collectively
(scientist and software developer) to better understand the
goals and objectives of the science.

So the process is not one of gained requirement content
simply through the transcription of information, gathered
and written into itemized requirements. Rather, it is the
process of frequent interaction using diagrams, drawings and
words to express a science requirement in ways comfortable
to both parties that help better define the requirements.

If We Knew the Requirements, We’d Be Done-What turns
out to be more problematic than uncovering areas of weak
understanding is the problem of managing what is already
known to be either poorly understood, or altogether
unknown. Scientists are usually quick to point out the limits
of their knowledge. Indeed, the notion of intellectual
honesty requires that they make this known, lest they appear
to claim knowledge they do not have.

In the scientific investigations we have been associated with,
the science team is usually confronted by a bewildering
array of unanswered questions, each vying for priority.
There are always far more questions to be answered than
there are scientists to answer them. In challenging science
projects, the science team often faces significant difficulties
simply keeping track of what it must solve in order to
progress scientifically, let alone write software requirements.

From this perspective, the scientist may claim (and many do)
that if they knew what the requirements were, the problem
would be solved, but solving the problem is what they have
been asked to do! The situation is not as circular as it may

appear, but it underscores the unique difficulty of specifying
requirements for a science project. In a sense, the
requirements represent knowledge of the solution, and all of
the programming and testing that go on in system
development are merely a means for verifying the
requirements!

We regret that we have not yet found an effective means of
managing the “known unknowns” in our systems.

A Comment on Emerging Social Approaches to
Requirement Engineering

Despite our enthusiasm for social approaches to
requirements engineering problems, we are less certain
about the promise of attempts to apply ethnographical
techniques to requirements engineering. For reasons that will
become clearer further on, the use of ethnography, as
reported in [13] seems to create more problems than it
solves. Our basic objection is that the injection of an
ethnographer into the requirements engineering process
merely introduces another interdisciplinary communications
problem, which is one of the principle problems we find in
science software development projects. We are also
concerned about the reception this technique would meet
with if applied to a science project. A physical scientist may
have difficulty accepting the involvement of a social
scientist (even a proxy), and may be prejudiced against the
methods and conclusions of the ethnographer in such a way
as to negate the potential benefits of the approach.

4. ROLE OF SCIENTIST-DEVELOPED CODES

As discussed above, many scientists are accustomed to
writing their own codes in support of their individual
activities. Although this can present some difficulties to a
software engineering team, certain opportunities arise as
well. We begin with a discussion of how scientists use
models to document their knowledge, the problems
associated with those models, and the emerging role of
software as a form of publication.

Nature of scientific models-Scientists model their
understanding of the physical world in many ways. Some
means of expression are more-or less universal, such as
equations, and x-y plots. Others are domain-specific, such as
the rules for drawing cladistic relations in tree form,
conventions for visually representing molecules and notation
used to express group-theoretical statements. Others are
simply ad hoc, such as the figures used to express the
geometry of a physical arrangement, or the sources and sinks
of carbon in the biogeochemical cycles.

The writer of a science software requirements specification
is presented with several difficulties. First, there is the
bewildering array of modeling methods used by scientists.
Second is the lack of a clear and unambiguous means of
linking all of the artifacts a scientist will present as reference
documentation. Typically, the ability to reliably negotiate

the maze of equations, papers and data in a particular field
comprises a portion of the training a scientist receives when
they earn their Ph.D. Clearly, it is unreasonable to expect
that a software engineer would retrace all of these steps
simply in order to write a specification.

The solution we have found to be most effective is to
employ people with scientific training, preferably at the
Masters or doctoral level, to serve as de facto interpreters.
These are not the same people who write the software
requirements, that job is reserved for experienced software
engineers.

The key aspect of their role is that, while possessing the
intellectual tools to understand the science, they are not
personally committed to performing the science, and
therefore are capable of standing apart from the science
activity in a way the science team members cannot. They are
able to answer questions about the software requirements
that the science team cannot, without necessarily having all
of the knowledge needed to answer a scientists question
about the science.

Another important aspect of the use of models in expressing
scientific theories, which must eventually find their way into
a software specification, is their nature as models. Recall
that the dualistic concept of truth is based on mental
representations and their correspondence to observables.
This correspondence is taken for granted in science. On the
other hand, the lack of objects appropriate for (especially
visual) modeling is a well-known problem in software
engineering. Modeling has established its value in software
engineering despite its overt lack of direct correspondence
to anything in the “real world”. It might even be said that the
methodologies associated with modeling techniques arose in
response to this deficiency. For the developer of science
software, the critical question is what is the relationship of
the model a software engineer builds of the software and the
models the scientist builds to express their understanding of
the world?

Sofnyare as Publication-One way to begin to answer this
question is to explore the evolving role software plays in
science. With the emergence of networked computer
systems, scientists have enjoyed an ever-increasing ability to
communicate and share data. The role of the Internet in the
development of string theory is a case in point, where the
importance of informal electronic communications
challenges the relevance of traditional peer-reviewed
journals. Within NASA’s Earth Observing System (EOS)
program, some scientists have begun to recognize that
making data available on the internet is in some ways
equivalent to publishing a paper.

Although we have not heard it explicitly discussed in
scientific circles, we expect it is only a matter of time before
scientists recognize the status of a software program as an
executable expression of scientific theory. In the context of

the present discussion, it is productive to assume this
viewpoint.

Doing so changes the nature of the question of the
relationship between scientific and software models. The
software program as model is introduced as a third form of
expression that both frustrates traditional software
engineering approaches, while clarifying in a way no other
approach can, the intent of the scientist.

On the TES project, we regard software developed by
scientists as prototype code. It is generally given in
conjunction with other, more traditional expositions of the
underlying scientific theory, and is typically developed by
the scientist in order to verify that the theory works
correctly. One issue for the software developer is which
form of expression takes priority? The textual description of
the theory, with its associated figures and equations, is
generally the form of expression used as the basis for
discussion among the science team, and usually
communicates the underlying ideas in more general fashion.
However, it is only the code form that has successfully
negotiated the translation process into software, and only
this form that has been tested empirically.

When the scientific problems are complex, as they are in the
case of the TES retrieval algorithm, it is insufficient to
provide a purely theoretical justification for a particular
analysis technique. There are simply too many subtleties to
permit anything but an empirical demonstration of the
correctness of the underlying theory to justify its acceptance.

This situation raises the immediate concern of software
engineers. What the scientist wants, with justification, is the
ability to write the code before the system is designed.

On the TES project, we have embarked on a long algorithm
prototyping effort. From the scientists’ perspective, the
purpose of this effort is to develop the processing
algorithms. In the terms used in this paper, we would say
they are developing the observational theory that will
underlie the data the team delivers to the larger scientific
community. Prior to its assuming a status of being an
observational theory, it must be shown to be a satisfactory
explanatory theory with regard to observed measurements of
the type TES will make. It is this process of transition from
explanatory status to observational status, and the possibility
of it operating in reverse, that is the source of so much
difficulty in the system development.

From the perspective of the software developers, the
purpose of the prototype is to establish an understanding of
what the code must do, i.e., the requirements. But is it
satisfactory to regard a prototype code as an expression of
requirements? Even if it were true, in what way could a
prototype code be interpreted as a requirement?

It would seem easy to say that the problem may be solved by
regarding the prototype code as a by-product of a

requirements definition activity, with the software engineers
taking what they have learned from it and codifying it in a
requirements document. However, this is not sufficient.
Even after a long and in-depth prototyping activity such as
TES’, the software engineers may not be in possession of
sufficient understanding of the domain to write an
acceptable specification.

Given the ongoing nature of the scientific process, the
prototype can never be regarded as complete until it has
been definitively replaced with another code. That means
that interest in the performance and functionality of the
prototype will continue throughout the lifetime of the
project, and possibly even afterwards. This is especially true
if the deliverable code does not contain all of the
functionality included in the prototype. A prototype code
may contain a number of alternative methods, and false
starts that later turn out to be of interest.

A prototype code is also of interest in it role as arbiter of
truth. A code that is taken as validating a scientific theory
then becomes a “reference code” against which other codes
are measured. If another code cannot come up with the same
answer, or prove why the original code is wrong, then it is
regarded as wrong. The prototype code developed by the
TES project is expected to play this role.

How can a prototype code be considered an expression of
software requirements? We have taken the approach that a
prototype can be considered part of a software requirement
only insofar as it is used as a reference code, i.e., as a source
of results that any subsequent code must match. Even here
one must be careful to specify the exact test cases to be
used, as it is possible for two codes to get identical results
on one case, and diverge on another. The code itself is
maintained under configuration control, and is provided to
the software developer as a detailed description of how the
requirement might be satisfied, but the particular solution is
not levied as a requirement.

On the TES project, the prototyping is treated as a major
part of the requirements definition process. An entire
segment of our workflow is devoted to managing the
prototyping process, and controlling the flow of new
requirements form the prototype to the production code. The
science team controls the prototyping process almost
entirely. Individual science team members propose new
ways of processing the data. Following a process outside the
software realm, they decide which algorithms merit
inclusion in the prototype. At this point the engineering staff
become involved by estimating the resources necessary to
implement the changes, and the teams jointly schedule the
new work. Once completed, the science team evaluates the
changes. If they are found to be acceptable the whole
process begins over again, this time in the context of the
production system development. In this new context, the
newly validated science algorithm is treated as a new
requirement.

The prototype code becomes the reference code for testing,
as well as a detailed example of how the requirement might
be satisfied. As part of the science evaluation process, the
scientist who initiated the process must provide written
documentation of the algorithm as well as specifications for
test cases and test results. These are entered into
configuration control along with the prototype code. The
whole is then associated together in one change package in
the configuration management system.

5. CONCLUSIONS

Science software development presents unique challenges to
the software engineering profession. These challenges derive
from the basic epistemological problems of science.
Working scientists are aware of these problems, but rarely
attempt to formulate them explicitly in terms of
epistemology. We have presented some philosophical and
cognitive information that provides a more explicit means of
describing the challenges of acquiring knowledge. In this
light, the problems of science software development are cast
in terms that emphasize the importance of team structure,
domain understanding and the development of common
interpretations of requirements versus a concentration on
how formally to express those requirements.

6. ACKNOWLEDGEMENTS

The authors would like to acknowledge Ken Scott, Annette
Larson and Robert Vargo for their valuable assistance in
reviewing early drafts of this work. The research described
in this paper was carried out by the Jet Propulsion
Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space
Administration.

7. REFERENCES

[l] Richard H. Thayer and Merlin Dorfman, Eds. Software
Requirements Engineering, 2“d Ed., Los Alamitos, CA IEEE
Computer Society Press, 1997.

[2] L. Pierce Williams “Normal Science, Scientific Revolutions
and the History of Science”, in Imre Lakatos and xxx Musgrave,
Eds., Criticism and the Growth of Knowledge, Cambridge:
Cambridge University Press, 1970.

[3] Imre Lakatos, “Falsification and the Methodology of
Scientific Research Programmes”, in Imre Lakatos and xxx
Musgrave, Eds., Criticism and the Growth of Knowledge,
Cambridge: Cambridge University Press, 1970.

[4] Terry Winograd and Fernando Flores, Understanding
Computers and Cognition, New York Addison Wesley, 1988.

[5] Humberto Maturana, ”Biology of Language: The
Epistemology of Reality“, in G.A. Miller and E. Lenneberg
(Eds.), Psychology and Biology of Language and Thought:
Essays in Honor of Eric Lenneberg, New York Academic Press,
1978.

[6] Jamed Siddiqi and M. Chandra Shekaran, “Requirements
Engineering: The Emerging Wisdom,” IEEE Software 13, 15-19,
March 1996.

[7] Thomas S. Kuhn, The Structure of Scientific Revolutions,
Chicago: University of Chicago Press, 1962.

[8] Joseph A. Goguen, “Formality and Informality in
Requirements Engineering,” Proceedings of the Second
International Conference on Requirements Engineering, Los
Alamitos: IEEE Computer Society Press, 1996.

[9] Robert Orenstein and David Sobel, The Healing Brain:
Breakthrough Discoveries About How the Brain Keeps Us
Healthy, Cambridge, MA Malor Books, 1987.

[lo] Augustin de le Pena, The Psychobiology of Cancer, New
York Praeger Publishers, 1983.

[l 11 Martin Heidegger, Being and Time, (translated by John
Macquarrie and Edward Robinson), New York Harper & Row,
1962.

[121 Derek Hatley and Imtiaz Pirbhai, Strategies for Real-
Time System Specification, New York: Dorset House, 1987.

[13] Stephen Viller and Ian Sommerville, “Social Analysis
in the Requirements Engineering Process: From
Ethnography to Method”, in Proceedings: 4th IEEE
Syposium on Requirements Engineering, Los Alamitos, CA:
IEEE Computer Society Press, 1999.

[14] SofhYare Management Standard, JPL D-4000,
Pasadena, CA: Jet Propulsion Laboratory.

[151 Howard Gardener, The Mind’s New Science: A History
of the Cognitive Revolution,

[16] Charles Percy Snow, The Two Cultures and the
Scientific Revolution, New York: Cambridge University
Press, 1959.

Steve Larson is a software project manager at the Jet
Propulsion Laboratory. He has been involved in the
development of science data processing systems for several
NASA Earth remote sensing projects. Prior to joining JPL,
he worked as a research assistant in the areas of plasma
physics and low-energy nuclear physics. He has an A.B. in
Art from Occidental College and a M.S. in Physics from
California State University, Northridge.

Brian Morrison is a software system engineer at the Jet
Propulsion Laboratory. He has been involved in the
development of avionic software systems at Lockheed
Aeronautical Systems and has worked on the command and
control software for several NASA deep space tracking
stations. Currently, he is involved in the development of a
science data processing system as part of NASA’s earth

remote sensing program. Mr. Morrison has a B.S. in
Computer Science from California State Polytechnic
University and an MBA specializing in project development
from the University of La Verne.

